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Which forecast horizon are we looking at ?
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Data assimilation problem

In meteorology, there exist two main streams of techniques:

Variational techniques 
(e.g. 3DVAR and 4DVAR)
“Cost functions” that measure the difference between model output 
and observations are optimised over a pre-defined time interval.

Sequential technique 
(e.g. Optimal Interpolation (3DDA), Kalman Filters (4DDA))
The model solution is recursively updated in a forward integration step 
with weights on observation and model output according to their 
uncertainties

Data assimilation: The combining of diverse data, possibly sampled at different times and 
intervals and different locations, into a unified and consistent description of a physical 
system, such as the state of the atmosphere.

The question is: How and to which extent can the limit of predictability of 
weather forecast models be overcome with the help of data assimilation?



  

A note on Ensemble Kalman Technique

Traditional Kalman filter technique:
   - account dynamically for the model errors
   - account for the uncertainty in the weather development
 but are: 
   - computationally very expensive
   - mostly only solvable for low-order problems

Ensemble Kalman filter techniques:
  - have the same characteristics of the Kalman filters
  - computationally much cheaper, because uncertainties are 
    estimated from ensemble forecasts (error covariance matrix is 
    given by the ensemble data) !
but
  - inbreeding problem if ensembles are built from perturbations of 
    observations (observation error covariance matrix is no longer 
    independent of background error covariance)

Solution: Generation of Ensemble weather data with independent 
ensembles, e.g. a Multi-Scheme Ensemble technique 



  

Principle of the MSEPS Ensemble Kalman Filter 
technique for Wind Power

MSEPS – Ensemble Kalman Filter
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Principle of the building of the Multi-Scheme EPS 
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Every „Scheme“ is an 
assumption of a 
series of equations in 
the 3D numerical 
weather prediction 
model to describe 
and solve a physical 
process – a 
“parameterisation”. 

- Every element in the cube represents a complete 3D numerical weather 
   prediction model with the same kernel and different well-defined physical 
   parameterisation schemes 
- The differences of the NWP models (members) are different assumptions 
   when solving dynamical and mathematical equations to compute physical 
   processes. 
=> Difference of the Ensemble Members are of physical nature !



  

Ensemble flow pattern responsible for the 
influence distribution in the short-term module
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Transformation of measurements with the help of 
Percentiles in the short-term forecasting module
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Transformation of measurements with the help of 
Percentiles in the short-term forecasting module
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Experiment: Upscaling and short-term forecasting 
of 80 measurement sites from 20 reference sites

Data: 
- Wind power measurement data from 80 sites in 15min resolution
- Wind power forecasts from 75 Ensemble members
Time period: 6 months (January - June)

Area showing distribution of 
all 80 measurement sites

Area showing distribution 
of 20 reference sites



  

Statistical Results of Experiment

P P P
mean bias bias bias

-3 29.9 1.3 1.3 0.0 2.2 5.1 0.0 2.9 6.8 0.0
-2 29.9 1.3 1.2 0.0 2.2 5.1 0.0 2.9 6.9 0.0
-1 29.9 1.2 1.1 0.0 2.2 5.2 0.0 2.9 7.0 0.0
0 29.8 1.2 1.1 0.0 2.2 5.2 0.0 3.0 7.1 0.0
1 29.8 1.0 1.1 -0.9 2.6 5.3 2.0 3.6 7.2 6.8
2 29.8 1.2 1.1 -1.9 3.6 5.4 4.8 5.0 7.3 10.3
3 29.8 1.3 1.2 -2.4 4.3 5.5 6.6 5.8 7.4 12.0
4 29.8 1.3 1.2 -2.8 4.7 5.6 8.2 6.4 7.5 13.5
5 29.8 1.3 1.3 -3.1 5.0 5.7 9.4 6.8 7.6 14.7
6 29.9 1.2 1.3 -3.4 5.2 5.7 10.5 7.1 7.7 15.9
7 29.9 1.2 1.2 -3.7 5.4 5.8 11.5 7.3 7.9 17.1
8 29.9 1.1 1.2 -3.9 5.5 5.8 12.4 7.6 8.0 18.2
9 29.9 1.0 1.1 -4.1 5.6 5.9 13.2 7.8 8.1 19.0

10 29.8 1.0 1.1 -4.3 5.6 5.9 13.9 7.9 8.2 19.9
11 29.8 0.9 1.0 -4.4 5.7 6.0 14.5 8.1 8.3 20.5
12 29.8 0.8 1.0 -4.5 5.8 6.0 15.0 8.2 8.4 21.2
13 29.8 0.8 0.9 -4.5 5.8 6.1 15.2 8.3 8.5 21.4

ShFC FCraw ShFC FCraw ShFC FCraw
fcl mae mae mae rmse rmse rmse

Mean absolute error:
After 2 hours the short-term forecasts is 
better than persistence

After 3 hours, the raw forecast is better 
than persistence

the MSEPS-EnKF short-term forecast is 
better for all 12 forecast hours than the 
raw forecast

Root Mean square error:
Already in the first hour the short-term 
MSEPS-EnKF forecast is better than 
persistence

After 2 hours, the raw forecast is better 
than persistence

the MSEPS-EnKF forecast is better for all 
12 forecast hours than the raw forecast



  

Statistical Results of Experiment

Mean absolute error Root mean square error



  

Summary & Conclusion

Distributing measurements in space and time is weather dependent

weather dependency in time (phase errors) can be solved mathematically with 
the help of covariance matrices in the Ensemble Kalman Filter technique 

Use of anti-correlation in the formation of the covariance matrices helps 
identifying the borders (in meteorological context fronts) of certain changes in 
the weather are in space and time

The MSEPS-iEnKF is future compatible, as any type of measurements can be 
used in the data assimilation step for wind power forecasts

it is the first physically consistent methodology, where meteorological ensemble 
forecasts provide the framework for the distribution of observational influence and 
where it is possible to back-scale aggregated total production measures of an area 
physically consistent for the statistical training of wind power forecasts

>> the MSEPS-iEnKF is the first algorithm that provides a feedback 
       mechanism to the NWP model for the generation of power curves

>> This is a milestone in wind energy forecasting and will be of great 
    value for the large-scale integration and requirements of reliable 
      handling of wind power
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