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Data assimilation problem

Data assimilation: The combining of diverse data, possibly sampled at different times and
intervals and different locations, into a unified and consistent description of a physical
system, such as the state of the atmosphere.

In meteorology, there exist two main streams of techniques:

Variational techniques

(e.g. 3DVAR and 4DVAR)

“Cost functions” that measure the difference between model output
and observations are optimised over a pre-defined time interval.

Sequential technique

(e.g. Optimal Interpolation (3DDA), Kalman Filters (4DDA))

The model solution is recursively updated in a forward integration step
with weights on observation and model output according to their
uncertainties

The question is: How and to which extent can the limit of predictability of
weather forecast models be overcome with the help of data assimilation?
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A note on Ensemble Kalman Technique

Traditional Kalman filter technique:
- account dynamically for the model errors
- account for the uncertainty in the weather development
but are:
- computationally very expensive
- mostly only solvable for low-order problems

Ensemble Kalman filter techniques:
- have the same characteristics of the Kalman filters
- computationally much cheaper, because uncertainties are
estimated from ensemble forecasts (error covariance matrix is
given by the ensemble data) !
but
- inbreeding problem if ensembles are built from perturbations of
observations (observation error covariance matrix is no longer
independent of background error covariance)

Solution: Generation of Ensemble weather data with independent
ensembles, e.g. a Multi-Scheme Ensemble technique



Principle of the MSEPS Ensemble Kalman Filter
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Principle of the building of the Multi-Scheme EPS
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Every ,Scheme" is an
assumption of a
series of equations in
the 3D numerical
weather prediction
model to describe
and solve a physical
process — a
“parameterisation”.

- Every element in the cube represents a complete 3D numerical weather
prediction model with the same kernel and different well-defined physical
parameterisation schemes

- The differences of the NWP models (members) are different assumptions
when solving dynamical and mathematical equations to compute physical
processes.

=> Difference of the Ensemble Members are of physical nature !
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Ensemble flow pattern responsible for the

influence distribution in the short-term module

iabl : .
\e/aArlab Laminar distribution

e e/l
varidg Laminar mirror-inverted distribution 'me/distance
e

/dis

: time/distance

\e/a['abl Turbulent distribution

L
time/distance



Transformation of measurements with the help of
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Transformation of measurements with the help of
Percentiles in the short-term forecasting module
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Experiment: Upscaling and short-term forecasting
of 80 measurement sites from 20 reference sites

Data:

- Wind power measurement data from 80 sites in 15min resolution
- Wind power forecasts from 75 Ensemble members

Time period: 6 months (January - June)

Area showing distribution of

Area showing distribution )
all 80 measurement sites

of 20 reference sites



Statistical Results of Experiment
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Statistical Results of Experiment
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Summary & Conclusion

Distributing measurements in space and time is weather dependent

weather dependency in time (phase errors) can be solved mathematically with
the help of covariance matrices in the Ensemble Kalman Filter technique

Use of anti-correlation in the formation of the covariance matrices helps
identifying the borders (in meteorological context fronts) of certain changes in
the weather are in space and time

The MSEPS-IEnKEF is future compatible, as any type of measurements can be
used in the data assimilation step for wind power forecasts

it is the first physically consistent methodology, where meteorological ensemble
forecasts provide the framework for the distribution of observational influence and
where it is possible to back-scale aggregated total production measures of an area
physically consistent for the statistical training of wind power forecasts

>> the MSEPS-IEnKF is the first algorithm that provides a feedback
mechanism to the NWP model for the generation of power curves

>> This is a milestone in wind energy forecasting and will be of great
value for the large-scale integration and requirements of reliable
handling of wind power
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